Name: Adam Reeck			Grading Quarter: 2	Week Beginning: October 23	
Sch	ol Yea		Subject: Geometry - Honors		
3 응 20 20	Notes:	Objective: Students will prove, apply, and solve problems using triangle inequality theorems. Lesson Foundations: Angle-side relationships in triangles, logic, Properties of inequalities (pg. 373), Exterior angle theorem Lesson Overview: Will primarily do problems as we have already covered these principles prior to fall break. Bellwork: Fill out your Math Log, In your notes, write out Perpendicular Bisector, Angle Bisector, Altitude, Median and draw a decent sized triangle next to each one, allowing several lines in between each term. Next, see if you can determine where each segment starts on the triangle. Assignment: 6-4 (1-16), 6-6 (1-19 odd)			Academic Standards: G.CO. 10
$\begin{aligned} & \stackrel{-1}{\stackrel{1}{0}} \\ & \text { N} \\ & \stackrel{0}{2} \end{aligned}$	Notes:	Objec segm Lesso Geom Sides Lesso types Bellw Review Assign	s will review Points of iangles that have specific : Perpendicular bisectors s, Distance formula, Py Make connections betw nts math logs, check your gr w problems from math	cy by creating ructions of, Coordinat n Theorem, Vertices, s of concurrency and ks, and	Academic Standards: $\begin{aligned} & \text { G.CO.9, G.CO.10, } \\ & \text { G.C0. } 12 \end{aligned}$

	Notes:	Objective: Students will demonstrate understanding by creating 4 triangles with the four points of concurrency. They'll demonstrate why they know those points are what they are. Lesson Foundations: Perpendicular Bisectors, Angle bisectors, Medians, Altitudes Lesson Overview: Test - Bellwork: Fill out your math logs. Homework: None	Academic Standards: $\begin{aligned} & \text { G.CO.9, G.CO.10, } \\ & \text { G.CO. } 12 \end{aligned}$
$\begin{aligned} & \text { 굿 } \\ & \text { ㄷ } \\ & \text { N } \\ & \stackrel{\text { N }}{\gtrless} \end{aligned}$	Notes:	Objective: Students will solve problems by applying the Centroid Theorem. They will use altitudes and their understanding of slopes to determine orthocenters of triangles. Lesson Foundations: Polygons, Interior/exterior angles, Vocab Lesson Overview: Angle Sum Theorem, individual angle measures Bell work: How many non-overlapping triangles can you create in an octagon? What is the sum of the measures of each one of those triangles? How many non-overlapping triangles can you create in a square? What about a hexagon? Is there a pattern? If so, what? Assignment: 7-1 (1-33 odd)	Academic Standards: G.MG. 1
$\begin{aligned} & \frac{\pi}{2} \\ & \frac{1}{2} \\ & \stackrel{2}{2} \end{aligned}$	Notes:	Objective: Students will understand the properties of a parallelogram by doing problems and creating problems that demonstrate the unique characteristics of Parallelograms. Lesson Foundations: Vocab, review the idea of properties Lesson Overview: Parallelograms and their properties Bellwork: Fill out your Math Log Assignment: 7-2 (1-5, 9-14, 19-27)	Academic Standards: $\text { G.CO. } 11$

Think about doing something with exploration

